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1 The Problem

Following Ed Pegg Jr (see the section “Material added 21 November 04” on
http://www.Mathpuzzle.com) we want to discuss the problem:{

which functions F have a representation of the form F (x) = f(f(x))?
for a given F , how many are the solutions, and how to build them?

We will confine ourselves to work in a polynomial framework, assuming that
both F and f are polynomials. In fact the non-polynomial framework seems
out of reach because unexpected non-polynomial solutions come out very often;
see later on. On the other hand, we will allow complex coefficients for our poly-
nomials F, f : as often happens, the real results easely follow from the complex
ones; and the complex approach gives rise to more elegant results.
Remark After reading a preliminary redaction of this paper, Ed sent me the
feedback:

One interesting trick to add: (f(f(x))− x)/(f(x)− x) always divides evenly

thus I added a last section, “Factorizations”, absent in the previous redaction.

2 Preliminary Remarks

Let us firstly deal with a somewhat anomalous case: the function F (x) = x + c
has the solution f(x) = x + c/2. If c 6= 0 we will see that this is the unique
solution; however, if c = 0, for any a we can also choose f(x) = a− x.
We will also see that, in the polynomial framework, the case F (x) = x is the
unique one giving raise to infinitely many solutions. Remark that this F is
singular even in the non-polynomial framework: for x 6= 0 also the functions
f(x) = a/x solve. A last remark on the non-polynomial case: the rational
function F (x) = 2x/(1− x2) has, for |x| < 1, the trascendental solution f(x) =
tan

(√
2 · arctan(x)

)
.

Let us fix some notations. For f polynomial of degree k, the polynomial f(f(x))
has degree k2; thus, for a suitable k, we can represent the given F and the
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unknown f in the form:

F (x) =
k2∑

j=0

Ajx
k−j ; f(x) =

k∑
j=0

ajx
k−j ; (A0, a0 6= 0);

remark that we used capital letters Aj for the data, and small letters aj for
the unknown coefficients. In other terms: we would freely choose the k2 + 1
coefficients of F , and impose the equation F (x) = f(f(x)) by using the k + 1
coefficients of f . It is quite natural to expect that, if k > 1, this is impossible;
and in fact we will see that, generally speaking, once we fix the first k + 1
coefficients A0, . . . , Ak we have no more degree of freedom.

3 Results

Let us evaluate f(f(x)) modulo the lower order terms, say the terms of order
strictly less than k2 − k; we will use the symbol “∼=” to denote that some lower
order terms have been suppressed. Because of

f(f(x)) ∼= a0 · [f(x)]k + a1 · [f(x)]k−1 ;

a0 · [f(x)]k ∼= a0 ·
[(

a0 · xk
)k + k ·

[
a0 · xk

]k−1 ·
[
a1 · xk−1 + · · ·+ ak

]]
;

a1 · [f(x)]k−1 ∼= a1

[
a0 · xk

]k−1

we get:

f(f(x)) ∼= ak+1
0 · xk∗k + k ·

[
a0 · xk

]k−1 ·
[
a1 · xk−1 + · · ·+ ak

]
+ a1

[
a0 · xk

]k−1

The comparison between the leading coefficients of F (x) and f(f(x)) gives:

A0 = ak+1
0 ; Aj = k ·ak

0 ·aj for j = 1, . . . , k−1; Ak = k ·ak
0 ·ak +a1 ·ak−1

0 .

In particular, from ak+1
0 = A0, we have k + 1 possible choices for a0 (recall that

A0 6= 0). Once a value for a0 has been fixed:

• if k = 0 we finished;

• if k = 1, we need a1 = A1/ (a0 + 1), to be discussed later on;

• if k > 1 we must choose:

aj = Aj/
(
k · ak

0

)
for j = 1, . . . , k − 1;

ak =
(
A1 − a1 · ak

0

) / (
k · ak

0

)
= (Ak −A1/k)

/ (
k · ak

0

)
the last formula following from the already known form of a1.

The case k = 1, as already remarked, deserves a surprise: for A0 6= 1 we simply
need to choose a1 = A1/ (a0 + 1); the same formula remains true if A0 = 1 and
we choose a0 = 1; however, for A0 = 1, if we want to choose a0 = −1, we need
A1 = 0; then any value for a1 is allowed.

Let us summarize the results in the complex framework. Searching for repre-
sentable polynomials F (x) of degree k, we have:
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• If k < 2, for any choice of F (x) other than x + c, there exist exactly k + 1
solutions.

• If k ≥ 2 we can freely choose the first k+1 coefficients of F ; this generates
k + 1 functions f that automatically select theyr own “lower order part”
for F .

Let us show how the last claim works by discussing the original example F (x) =
x4 − 4x3 + 8x + 2 proposed by Ed Pegg. Our formulas force f(x) = ω · x2 −
2ω · x + 1 − 2ω, where ω denotes a third root of the unit. Accordingly we get
f(f(x)) = x4 − 4x3 + 8x + 5− 3ω; thus we need ω = 1, say f(x) = x2 − 2x− 1.

A last remark concerns the real framework: let F (x) be a real polynomial of
degree k, other than x + c. Among the k + 1 complex-coefficients polynomials
f we have built, the number of real f is just one if k is odd; and, for even k, is
two or none, according to A0 > 0 or A0 < 0.

4 Factorizations

A somewhat different approach can be based on factorizations results; e.g. let
us remark that:

F ′(x)/f ′(x) always divides evenly
as obvious because of F ′(x) = f(f(x))′ = f ′(f(x)) · f ′(x).
RemarkLet x0 be a (real or complex) value such that f(x0) = x0. Then:

• F ′(x0) = f ′(x0)2.

• F ′′(x0) = f ′′(x0)f ′(x0)2 + f ′(x0)f ′′(x0)

• For k > 2 any term appearing in F (k)(x0) contains a factor like f (j)(x0)
for a j ≥ 2.

Now let us set G(x) := f(f(x)) − x and g(x) := f(x) − x. For any x0 with
g(x0) = 0 one has G(x0) = 0; if one has also g′(x0) = 0, say f ′(x0) = 1 then
(see the previous remark) G′(x0) = F ′(x0)− 1 = 0; always due to the previous
remark, if g′′(x0) = 0, say f ′′(x0) = 0, then G′′(x0) = 0; and so on.
In other words, any (real or complex) root of g is also a root of G with at least
the same molteplicity; this implies that g(x) is a factor of G(x); say:

(f(f(x))− x)/(f(x)− x) always divides evenly.
Let us see how these properties can be used, by treating again the example
F (x) = x4 − 4x3 + 8x + 2: we confine ourselves to discuss the real case, thus
the leading coefficients of f and f ′ must be 1 and 2, instead of ω and 2ω.
Because of F ′(x) = 4(x−1)(x−1−

√
3)(x−1+

√
3), for f ′(x) we have to choose

one among 2(x− 1), 2(x− 1−
√

3) and 2(x− 1 +
√

3).
Because of F (x)− x = (x− 2)(x + 1)(x− 3+

√
13

2 )(x− 3−
√

13
2 ) we have a priori

six possible choices for the second degree polynomial f(x) − x; but only the
choice f(x) − x = (x − 3+

√
13

2 )(x − 3−
√

13
2 ) = x2 − 3x − 1 is compatible with

the formulas we got for f ′(x); thus we end up with the already found solution
f(x) = x2 − 2x− 1.
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