Generalized Balanced Tournament Designs

E. R. Lamken

Stable URL:
http://links.jstor.org/sici?sici=0002-9947%28199004%29318%3A2%3C473%3AGBTD%3E2.0.CO%3B2-N

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.
GENERALIZED BALANCED TOURNAMENT DESIGNS

E. R. LAMKEN

ABSTRACT. A generalized balanced tournament design, $GBTD(n, k)$, defined on a kn-set V, is an arrangement of the blocks of a $(kn, k, k - 1)$-BIBD defined on V into an $n \times (kn - 1)$ array such that (1) every element of V is contained in precisely one cell of each column, and (2) every element of V is contained in at most k cells of each row. In this paper, we introduce $GBTD(n, k)$s and describe connections between these designs and several other types of combinatorial designs. We also show how to use $GBTDs$ to construct resolvable, near resolvable, doubly resolvable and doubly near resolvable BIBDs.

1. INTRODUCTION

A generalized balanced tournament design, $GBTD(n, k)$, defined on a kn-set V, is an arrangement of the blocks of a $(kn, k, k - 1)$-BIBD defined on V into an $n \times (kn - 1)$ array such that

1. every element of V is contained in precisely one cell of each column, and
2. every element of V is contained in at most k cells of each row.

This generalizes the idea of a balanced tournament design and we note that a $GBTD(n, 2)$ is a BT$D(n)$, [32].

A simple but very important observation is stated in the next lemma.

Lemma 1.1. Every element of a $GBTD(n, k)$ is contained k times in $(n - 1)$ rows and $(k - 1)$ times in the remaining row.

Let G be a $GBTD(n, k)$. An element which is contained in only $k - 1$ cells of row i of G is called a deficient element of row i. It is easily seen that each row of G contains exactly k deficient elements. These elements are called the deficient k-tuple of row i. The deficient elements of row i need not occur in a common block of row i.

Lemma 1.2. The deficient k-tuples of G partition the set V into n k-tuples.

We illustrate these definitions by displaying a $GBTD(3, 3)$ in Figure 1. The
deficient triples of rows 1, 2 and 3 are respectively \{4, 6, 8\}, \{1, 2, 9\} and \{3, 5, 7\}.

Let \(C = (C_1, C_2, \ldots, C_n)^T \) where \(C_i, \ 1 \leq i \leq n \), is the deficient \(k \)-tuple of row \(i \) of \(G \). If \(C \) occurs as a column in \(G \) \(k - 1 \) times, \(G \) is said to have property \(C \). The \(GBTD(3, 3) \) displayed in Figure 1 does not have property \(C \). A \(GBTD(4, 3) \) with Property \(C \) is displayed in Figure 2.

\[
\begin{array}{ccccccccc}
1 & 2 & 9 & 3 & 4 & 9 & 5 & 6 & 9 \\
3 & 5 & 7 & 1 & 6 & 7 & 1 & 3 & 8 \\
4 & 6 & 8 & 2 & 5 & 8 & 2 & 4 & 7 \\
2 & 3 & 8 & 1 & 7 & 8 & 9 & 1 & 2 & 9 \\
1 & 7 & 8 & 2 & 3 & 8 & 2 & 6 & 7 \\
7 & 8 & 9 & 1 & 2 & 9 & 1 & 8 & 7 \\
8 & 9 & 1 & 2 & 9 & 1 & 8 & 7 & 6 \\
9 & 1 & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\
2 & 3 & 8 & 1 & 7 & 8 & 9 & 1 & 2 & 9 \\
3 & 4 & 9 & 5 & 6 & 9 & 1 & 2 & 9 \\
4 & 5 & 6 & 9 & 1 & 2 & 9 & 3 & 4 & 9 \\
5 & 6 & 9 & 1 & 2 & 9 & 3 & 4 & 9 \\
6 & 9 & 1 & 2 & 9 & 3 & 4 & 9 \\
9 & 1 & 2 & 9 & 3 & 4 & 9 \\
\end{array}
\]

Figure 1. A GBTD(3, 3)

\[
\begin{array}{cccccccccccc}
FGJ & EIL & DHK & FHL & EKL & DIJ & FIK & DGL & EHJ & ABC & ABC \\
AIL & CHK & CIJ & BGJ & BHL & AGK & AHJ & BIK & CGL & DEF & DEF \\
BEK & BFJ & AEL & CDK & ADJ & CFL & BDL & CEF & AFK & GHI & GHI \\
CDH & ADG & BFG & AEI & CFI & BEH & CEG & AFH & BDI & JKL & JKL \\
\end{array}
\]

Figure 2. A GBTD(4, 3) with Property C

A near generalized balanced tournament design, \(NGBTD(n, k) \), defined on a \((kn+1) \)-set \(V \), is an arrangement of the blocks of a \((kn+1, k, k-1) \)-\(BIBD \) defined on \(V \) into an \(n \times (kn+1) \) array so that

1. every element of \(V \) occurs precisely \(k \) times in each row;
2. every column of the array contains \(kn \) distinct elements of \(V \), and
3. the columns form a near resolution of the \((kn+1, k, k-1) \)-\(BIBD \).

A near generalized balanced tournament design is a generalization of an odd balanced tournament design; in particular, a \(NGBTD(n, 2) \) is an \(OBTD(n) \), [19]. We illustrate this definition by displaying a \(NGBTD(2, 3) \) in Figure 3.

\[
\begin{array}{cccccccccccc}
124 & 235 & 346 & 450 & 561 & 602 & 013 \\
356 & 460 & 501 & 612 & 023 & 134 & 245 \\
\end{array}
\]

Figure 3. A NGBTD(2, 3)

The existence of \(BTD(n)s \) or \(GBTD(n, 2)s \) was established in 1977 [32]; there exists a \(GBTD(n, 2) \) for \(n \) a positive integer, \(n \neq 2 \). The existence of \(OBTD(n) s \) or \(NGBTD(n, 2) s \) is also well known and easy to prove [21]; there exists a \(NGBTD(n, 2) \) for \(n \) a positive integer. Factored \(BTDs \), partitioned \(BTDs \), \(BTDs \) with almost orthogonal resolutions and \(OBTDs \) with orthogonal resolutions have been investigated extensively in the past few years. Results on these designs can be found in the following papers [15, 16, 17, 18, 8, 20,
Most of these designs have become of interest recently because of their relationships to other types of combinatorial designs. Of particular interest to us are the connections between balanced tournament designs and resolvable and doubly resolvable BIBDs [19].

The purpose of this paper is to introduce generalized balanced tournament designs including factored and partitioned GBTDs, as well as near generalized balanced tournament designs. We will show that these designs are also of considerable interest because of their relationships to other designs. One of our main results will be to show that PGBTD(n, k)s can be used directly to construct $DR(nk, k, k-1)$-BIBDs. This will provide a surprisingly easy way to construct the doubly resolvable designs. This paper is the first of a series of papers on generalized balanced tournament designs [10, 11]. The remaining papers describe in detail constructions for GBTDs and existence results for these designs. As we noted above and in [20], existence results for GBTD(n, k)s with $k = 2$ are known. In [11], we consider the next case, $k = 3$. For completeness, we list two of the existence results here.

Theorem 1.3 [11]. For n a positive integer, $n \geq 3$, there exists a GBTD(n, 3) except possibly for $n \in \{14, 17, 23, 47, 62, 68, 95, 102, 115\}$.

Theorem 1.4 [11]. For n a positive integer, there exists a NGBTD(n, 3) except possibly for $n \in \{3, 38, 39, 118\}$.

In the next section, we collect some preliminary definitions and results on resolvable, near resolvable, doubly resolvable and doubly near resolvable BIBDs. In §3, we define and discuss factored GBTDs (FGBTDs); we will show that FGBTDs with Property C can be used to construct 1-dimensional frames. Partitioned GBTDs (PGBTDs) are defined in §4 and the equivalence of these designs to doubly resolvable designs is described. In §5, we generalize several constructions from [19] which use GBTDs and NGBTDs to construct resolvable, near resolvable, doubly resolvable and doubly near resolvable BIBDs.

2. Preliminary definitions and results

Generalized balanced tournament designs can be used to construct resolvable, near resolvable, doubly resolvable and doubly near resolvable balanced incomplete block designs. In this section, we collect some of the necessary definitions and existence results for these constructions.

A balanced incomplete block design (BIBD) D is a collection B of subsets (blocks) taken from a finite v-set V of elements with the following properties:

1. Every pair of distinct elements from V is contained in precisely λ blocks of B.
2. Every block contains exactly k elements.

We denote such a design as a (v, k, λ)-BIBD. It is well known that necessary conditions for the existence of a (v, k, λ)-BIBD are

\[
\lambda(v - 1) \equiv 0 \pmod{(k - 1)} \quad \text{and} \quad \lambda v(v - 1) \equiv 0 \pmod{k(k - 1)}.
\]
A \((v, k, \lambda)-BIBD\) \(D\) is said to be resolvable (and denoted by \((v, k, \lambda)-RBIBD\)) if the blocks of \(D\) can be partitioned into classes \(R_1, R_2, \ldots, R_r\) (resolution classes) where \(r = \frac{\lambda(v-1)}{(k-1)}\) such that each element of \(D\) is contained in precisely one block of each class. The classes \(R_1, R_2, \ldots, R_r\) form a resolution of \(D\). Necessary conditions for the existence of a \((v, k, \lambda)-RBIBD\) are that (1) be satisfied and that \(v \equiv 0 \pmod{k}\).

A \((v, k, \lambda)-BIBD\) \(D\) is said to be near resolvable (and denoted by \(NR(v, k, \lambda)-BIBD\)) if the blocks of \(D\) can be partitioned into classes \(R_1, R_2, \ldots, R_v\) (resolution classes) such that for each element \(x\) of \(D\) there is precisely one class which does not contain \(x\) in any of its blocks and each class contains precisely \(v-1\) distinct elements of the design. Necessary conditions for the existence of \(NR(v, k, \lambda)-BIBDs\) are \(v \equiv 1 \pmod{k}\) and \(\lambda = k - 1\).

In general, the spectrum of resolvable and near resolvable \((v, k, \lambda)-BIBDs\) remains open. The existence of these designs has been established for several small values of \(k\) and \(\lambda\). In this paper, we are primarily interested in the cases \(\lambda = k - 1\). For completeness, we include some of the results for other values of \(\lambda\). It is well known that there exists a \((v, 2, 1)-RBIBD\) for \(v\) a positive integer and \(v \equiv 0 \pmod{2}\) and that there exists a \(NR(v, 2, 1)-BIBD\) for \(v\) a positive integer and \(v \equiv 1 \pmod{2}\). The existence of \(RBIBDs\) and \(NRBIBDs\) has also been established for block size \(k = 3\); the necessary conditions are also sufficient (with one exception).

Theorem 2.1 (Ray-Chaudhuri and Wilson [28]). There exists a \((v, 3, 1)-RBIBD\) if and only if \(v \equiv 3 \pmod{6}\).

Theorem 2.2 (Hanani [6]). (i) There exists a \((v, 3, 2)-RBIBD\) if and only if \(v \equiv 0 \pmod{3}\) and \(v \neq 6\). (ii) There exists a \(NR(v, 3, 2)-BIBD\) if and only if \(v \equiv 1 \pmod{3}\), \(v \geq 4\).

For block size \(k = 4\), the following results are known.

Theorem 2.3 (Hanani, Ray-Chaudhuri and Wilson [7]). There exists a \((v, 4, 1)-RBIBD\) if and only if \(v \equiv 4 \pmod{12}\).

Theorem 2.4 (Baker [1]). There exists a \((v, 4, 3)-RBIBD\) if and only if \(v \equiv 0 \pmod{4}\).

For block size larger than 4, very little is known. Recent results for \((v, 5, 1)-RBIBDs\) can be found in [2], and results for \((v, 6, 10)-RBIBDs\) appear in [1]. For the designs that we are interested in with \(\lambda = k - 1\), the next case where some results have been obtained is \(k = 8\).

Theorem 2.5 (Rokowska [31]). For all \(v \equiv 0 \pmod{8}\) which are not divisible by 3, 5 and 7, there exists a \((v, 8, 7)-RBIBD\).

Some other infinite classes of resolvable \(BIBDs\) are known to exist. We include some existence results for the case \(\lambda = k - 1\) in our list of results for doubly resolvable \(BIBDs\).
A \((v, k, \lambda)-\text{BIBD}\) is said to be doubly (near) resolvable if there exist two (near) resolutions \(R\) and \(R'\) of the blocks such that \(|R_i \cap R'_j| \leq 1\) for all \(R_i \in R\), \(R'_j \in R'\). (It should be noted that the blocks of the design are considered as being labelled so that if a subset of the elements occurs as a block more than once the blocks are treated as distinct.) The (near) resolutions \(R\) and \(R'\) are called orthogonal resolutions of the design. A doubly resolvable \((v, k, \lambda)-\text{BIBD}\) is denoted by \(\text{DR}(v, k, \lambda)-\text{BIBD}\) and a doubly near resolvable \((v, k, \lambda)-\text{BIBD}\) by \(\text{DNR}(v, k, \lambda)-\text{BIBD}\).

A Kirkman square with block size \(k\), order \(v\) and index \(\lambda\), \(\text{KS}_k(v; 1, \lambda)\), is a \(t \times t\) array \(K (t = \lambda(v - 1)/(k - 1))\) defined on a \(v\)-set \(V\) such that

1. each element of \(V\) is contained in precisely one cell of each row and column of \(K\);
2. each cell of \(K\) is either empty or contains a \(k\) subset of \(V\);
3. The collection of blocks obtained from the nonempty cells of \(K\) is a \((V, k, 2)-\text{BIBD}\).

We can use a pair of orthogonal resolutions of a \(\text{DR}(v, k, \lambda)-\text{BIBD}\) to construct a \(\text{KS}_k(v; 1, \lambda)\). The rows of the array form one resolution of the \(\text{DR}(v, k, \lambda)-\text{BIBD}\) and the columns form an orthogonal resolution. Similarly, we can use a pair of orthogonal resolutions of a \(\text{DNR}(v, k, \lambda)-\text{BIBD}\) to construct a \(v \times v\) array. The rows of the array will form one resolution of the design and the columns will form an orthogonal resolution. If the \(\text{DNR}(v, k, \lambda)-\text{BIBD}\) has the additional property that under an appropriate ordering of the resolution classes \(R\) and \(R'\), \(R_i \cup R'_i\) contains precisely \(v - 1\) distinct elements of the design for all \(i\), then the array is called a \((1, \lambda; k, v, 1)\)-frame [24]. Note that the diagonal of a \((1, \lambda; k, v, 1)\)-frame is empty and a unique element of the design can be associated with each cell \((i, i)\). (This distinction between \((1, \lambda; k, v, 1)\)-frames and \(\text{DNR}(v, k, \lambda)-\text{BIBDs}\) is important in recursive constructions.)

Even less is known about the spectrum of doubly resolvable and doubly near resolvable \((v, k, \lambda)-\text{BIBDs}\). Although several infinite classes of \(\text{DR}(v, k, \lambda)-\text{BIBDs}\) are known for \(k \geq 3\), [5, 3, 38], the existence of \(\text{DR}(v, k, \lambda)-\text{BIBDs}\) has been settled only for \(k = 2\) and \(\lambda = 1\). \((\text{DR}(v, 2, 1)-\text{BIBDs}\) are also called Room squares.)

Theorem 2.6 (Mullin and Wallis [27]). There exists a \(\text{DR}(v, 2, 1)-\text{BIBD}\) for \(v\) a positive integer, \(v \equiv 0 \pmod{2}\) and \(v \neq 4\) or \(6\).

An immediate corollary of this result is the following.

Corollary 2.7. There exists a \(\text{DNR}(v, 2, 1)-\text{BIBD}\) (and a \((1, 1; 2, v, 1)\)-frame) for \(v \equiv 1 \pmod{2}\), \(v \neq 3\) or \(5\).

For block size \(k = 3\) the problem is more difficult. The best result, thus far, for \(\lambda = 1\) is asymptotic.

Theorem 2.8 (Rosa and Vanstone [30]). There exists a constant \(v_1\) such that for all \(v_1 \leq v\) and \(v \equiv 3 \pmod{6}\) there exists a \(\text{DR}(v, 3, 1)-\text{BIBD}\).
The problem is more tractable for $k = 3$ and $\lambda = 2$. The best results, thus far, for $DNR(v, 3, 2)$-BIBDs are the following.

Theorem 2.9 (Lamken and Vanstone [24]). For n a positive integer, there exists a $(1, 2; 3, 15n + 1, 1)$-frame or a $DNR(15n + 1, 3, 2)$-BIBD.

Theorem 2.10 (Lamken [13]). There exists a $DNR(v, 3, 2)$-BIBD for $v \equiv 1 \pmod{9}$ except possibly for $v = 55$.

There are two analogous results for $DR(v, 3, 2)$-BIBDs.

Theorem 2.11 (Lamken and Vanstone [23]). For $v \equiv 1 \pmod{12}$, there exists a $DR(v, 3, 2)$-BIBD which contains as a subarray a $DR(3, 3, 2)$-BIBD.

Theorem 2.12 (Lamken [13]). Let $M = \{6, 8, 10, 12, 14, 15, 18, 20, 22, 24, 26, 30, 32, 34, 38, 39, 42, 44, 46, 48, 51, 52, 58, 118\}$ and let $v = 9m + 3$ where m is a positive integer, $m \notin M$. Then there exists a $DR(v, 3, 2)$-BIBD.

Quite recently, the spectrum of $DR(v, 3, 2)$-BIBDs has been determined with a small number of possible exceptions, [12]. We note some of the ideas used for this result in §4.

For $k \geq 3$, some infinite classes of $DR(v, k, \lambda)$-BIBDs have been constructed. We include two of these results.

Theorem 2.13 (Fuji-Hara and Vanstone [5]). For p a prime power and n a positive integer greater than 2, there exists a $DR(p^n, p, 1)$-BIBD.

Theorem 2.14 (Curran and Vanstone [3]). For k a prime power and $k \geq 3$ there exists a $DR(k^2 + k, k, k - 1)$-BIBD.

Finally, we note that the generalization of the Kirkman square has been studied in [14, 25, 26]. Frames have also been investigated in a more general setting; we refer to [4, 24, 37, 38, 36] for some of these results.

3. Factored generalized balanced tournament designs

Let G be a $GBTD(n, k)$ defined on V, and let $C = (C_1, C_2, \ldots, C_n)^T$ where C_i, $1 \leq i \leq n$, be the deficient k-tuple of row i of G. Suppose the blocks in row i of $G \cup C_i$ can be partitioned into k sets of n blocks each, $F_{i1}, F_{i2}, \ldots, F_{ik}$, so that every element of V occurs precisely once in F_{ij} for $j = 1, 2, \ldots, k$. If every row of G has this property, then G is called a factored generalized balanced tournament design and is denoted by $FGBTD(n, k)$. We will call $F_{i1}, F_{i2}, \ldots, F_{i(k-1)}, F_{ik}$ the factors of row i. The $GBTD(4, 3)$ displayed in Figure 2 is factored; the factors are listed in Table 1. We note that if a $FGBTD(n, k)$ also has Property C then $C_i \in F_{ij}$ for $j = 1, 2, \ldots, k$ and $i = 1, 2, \ldots, n$.

The existence of factored generalized balanced tournament designs with Property C is equivalent to the existence of 1-dimensional frames with or-
thogonal resolutions. We will need some additional definitions and notation in order to describe these frames.

Table 1
Factors for the $FGBTD(4, 3)$ displayed in Figure 2

<table>
<thead>
<tr>
<th>Row 1:</th>
<th>ABC</th>
<th>FGJ</th>
<th>EIL</th>
<th>DHK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>FHL</td>
<td>EGK</td>
<td>DIJ</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>FIK</td>
<td>DGL</td>
<td>EHJ</td>
<td></td>
</tr>
<tr>
<td>Row 2:</td>
<td>DEF</td>
<td>BIK</td>
<td>AHJ</td>
<td>CGL</td>
</tr>
<tr>
<td>DEF</td>
<td>AIL</td>
<td>CHK</td>
<td>BGJ</td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>CIJ</td>
<td>BHL</td>
<td>AGK</td>
<td></td>
</tr>
<tr>
<td>Row 3:</td>
<td>GHI</td>
<td>BEK</td>
<td>ADJ</td>
<td>CFL</td>
</tr>
<tr>
<td>GHI</td>
<td>BFJ</td>
<td>AEL</td>
<td>CDK</td>
<td></td>
</tr>
<tr>
<td>GHI</td>
<td>BDL</td>
<td>CEJ</td>
<td>AFK</td>
<td></td>
</tr>
<tr>
<td>Row 4:</td>
<td>JKL</td>
<td>CDH</td>
<td>BFG</td>
<td>AEI</td>
</tr>
<tr>
<td>JKL</td>
<td>AFH</td>
<td>CEG</td>
<td>BDI</td>
<td></td>
</tr>
<tr>
<td>JKL</td>
<td>BEH</td>
<td>CFI</td>
<td>ADG</td>
<td></td>
</tr>
</tbody>
</table>

A group divisible design (GDD) is a collection B of subsets (blocks) of size k taken from a v-set V along with a partition of V in groups G_1, G_2, \ldots, G_n such that

1. any two elements from distinct groups are contained in precisely λ_2 blocks of B; and
2. any two distinct elements from the same groups are contained in precisely λ_1 blocks of B ($\lambda_1 < \lambda_2$).

We denote such a design by $GDD(v; k; G_1, G_2, \ldots, G_n; \lambda_1, \lambda_2)$. If $|G_i| = h$ for $i = 1, 2, \ldots, n$, we denote the design by $GDD(v; k; h; \lambda_1, \lambda_2)$.

A GDD is resolvable if the blocks can be partitioned into classes (resolution classes) R_1, R_2, \ldots, R_r such that every element of V is contained in precisely one block of each R_i, $1 \leq i \leq r$. The collection of resolution classes is called a resolution of the GDD.

Lemma 3.1 (Vanstone [38]). In a resolvable GDD all groups have the same size.

We denote a resolvable GDD with $|G_i| = h$ for all i by $RGDD(v; k; h; \lambda_1, \lambda_2)$. Let V be a set of nk elements. Let G_1, G_2, \ldots, G_n be a partition of V into n sets where $|G_i| = k$ for $i = 1, 2, \ldots, n$. A 1-dimensional $\{G_1, G_2, \ldots, G_n\}$-frame F with block size k, index $k - 1$ and group size k is a set P of partial resolution classes of V which satisfies the following properties. Let $P = \{P_{ij} \mid |P_{ij}| = h, 1 \leq i \leq r, 1 \leq j \leq k\}$.

1. Each partial resolution class P_{ij} contains $n - 1$ blocks of size k.

Table 1
Factors for the $FGBTD(4, 3)$ displayed in Figure 2

<table>
<thead>
<tr>
<th>Row 1:</th>
<th>ABC</th>
<th>FGJ</th>
<th>EIL</th>
<th>DHK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>FHL</td>
<td>EGK</td>
<td>DIJ</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>FIK</td>
<td>DGL</td>
<td>EHJ</td>
<td></td>
</tr>
<tr>
<td>Row 2:</td>
<td>DEF</td>
<td>BIK</td>
<td>AHJ</td>
<td>CGL</td>
</tr>
<tr>
<td>DEF</td>
<td>AIL</td>
<td>CHK</td>
<td>BGJ</td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>CIJ</td>
<td>BHL</td>
<td>AGK</td>
<td></td>
</tr>
<tr>
<td>Row 3:</td>
<td>GHI</td>
<td>BEK</td>
<td>ADJ</td>
<td>CFL</td>
</tr>
<tr>
<td>GHI</td>
<td>BFJ</td>
<td>AEL</td>
<td>CDK</td>
<td></td>
</tr>
<tr>
<td>GHI</td>
<td>BDL</td>
<td>CEJ</td>
<td>AFK</td>
<td></td>
</tr>
<tr>
<td>Row 4:</td>
<td>JKL</td>
<td>CDH</td>
<td>BFG</td>
<td>AEI</td>
</tr>
<tr>
<td>JKL</td>
<td>AFH</td>
<td>CEG</td>
<td>BDI</td>
<td></td>
</tr>
<tr>
<td>JKL</td>
<td>BEH</td>
<td>CFI</td>
<td>ADG</td>
<td></td>
</tr>
</tbody>
</table>
(2) Every element of \(V - G_i \) occurs precisely once in \(P_{ij} \) for \(j = 1, 2, \ldots, n \).

(3) The collection of blocks in \(P \) is a \(GDD(nk; k; G_1, \ldots, G_n; 0, k-1) \).

We will call \(F \) a 1-dimensional \((1, k-1; k, n, k)\)-frame. (This notation is consistent with our notation for frames in general [24].) A 1-dimensional \((1, 2; 3, 4, 3)\)-frame is displayed in Figure 4 to illustrate this definition. We note that 1-dimensional frames have become of interest in the past few years and have been used to prove several new results for resolvable designs [29, 35, 36].

Let \(G \) be a \(RGDD(nk; k; G_1, G_2, \ldots, G_n; 0, k-1) \) defined on a set \(V \). Let \(R_1, R_2, \ldots, R_{(n-1)k-2} \) denote the resolution classes of a resolution \(R \) of \(G \). Suppose there exists a 1-dimensional \((1, k-1; k, n, k)\)-frame \(F \) where \(F \) is a \(\{G_1, G_2, \ldots, G_n\} \)-frame and \(F \) contains the blocks of \(G \). Let \(P = \{P_{i1}, P_{i2}, \ldots, P_{ik}\}_{i=1,2,\ldots,n} \) denote the partial resolution classes of \(F \). If \(|R_j \cap (P_{i1} \cup P_{i2} \cup \cdots \cup P_{ik})| = 1 \) for \(j = 1, 2, \ldots, n \) and \(i = 1, 2, \ldots, nk - k - 2 \), then we say \(R \) is an orthogonal resolution for \(F \). As an example of this definition, the first nine columns of the \(FGBTD(4, 3) \) in Figure 2 form an orthogonal resolution for the 1-dimensional frame in Figure 4.

\[
\begin{array}{cccc}
P_{11} & FGJ & EIL & DHK \\
P_{12} & FHL & EGK & DIJ \\
P_{13} & FIK & DGL & EHJ \\
P_{21} & BIK & AHJ & CGL \\
P_{22} & AIL & CHK & BGI \\
P_{23} & CIJ & BHL & AGK \\
P_{31} & BEK & ADJ & CFL \\
P_{32} & BFJ & AEL & CDF \\
P_{33} & BDL & CEI & AFK \\
P_{41} & CDH & BFG & AEI \\
P_{42} & AFH & CEG & BDI \\
P_{43} & BEH & CFI & ADG \\
\end{array}
\]

Figure 4. A 1-dimensional \((1, 2; 3, 4, 3)\)-frame

We can now prove the following equivalence.

Theorem 3.2. There exists a \(FGBTD(n, k) \) with Property C if and only if there exists a 1-dimensional \((1, k-1; k, n, k)\)-frame \(F \) with an orthogonal resolution.

Proof. Let \(G \) be a \(FGBTD(n, k) \) with Property C defined on a set \(V \) of \(nk \) elements. Suppose the factors of row \(i \) are \(F_{i1}, F_{i2}, \ldots, F_{i(k-1)}, F_{ik} \) for \(i = 1, 2, \ldots, n \). Since \(G \) has Property C, \(C_i \in F_{ij} \) for \(j = 1, 2, \ldots, k-1 \).
Let $F'_{ij} = F_{ij} - C_i$ for $j = 1, 2, \ldots, k - 1$ and let $F'_{ik} = F_{ik}$. The collection of blocks in $\bigcup_{j=1,2,\ldots,n} F'_{ij}$ is a $GDD(nk; k; k; 0, k - 1)$. The groups of the design are the deficient k-tuples, C_1, C_2, \ldots, C_n. Every element in $V - C_i$ occurs precisely once in the blocks of F'_{ij}, $j = 1, 2, \ldots, k$. We can construct a 1-dimensional $(1, k - 1; k, n, k)$-frame F by defining the partial resolution classes as follows: $P_{ij} = F'_{ij}$ for $j = 1, 2, \ldots, k$ and $i = 1, 2, \ldots, n$. If we delete the $k - 1$ copies of C from G, it is clear that the remaining columns of G form resolution classes for a resolution R of the resulting $GDD(nk; k; k; 0, k - 1)$. Since each resolution class contains precisely one block from each row of the $FGBT(n, k)$ and thus precisely one block from $(P_{j1} \cup P_{j2} \cup \cdots \cup P_{jk})$, the resolution R is an orthogonal resolution for the 1-dimensional frame F.

This construction can be reversed. If we start with a 1-dimensional $(1, k - 1; k, n, k)$-frame with an orthogonal resolution, we can construct a $FGBT(n, k)$ as follows. Let F be a (C_1, C_2, \ldots, C_n)-frame defined on an nk set V. The blocks in row i of the $FGBT(n, k)$ will be the blocks in $P_{i1} \cup P_{i2} \cup \cdots \cup P_{ik}$ together with $k - 1$ copies of the group C_i. The ith resolution class of the orthogonal resolution R, R_i, will contain the blocks of the ith column of the $FGBT(n, k)$ for $i = 1, 2, \ldots, nk - k - 2$. Finally, the $FGBT(n, k)$ will contain $k - 1$ copies of the column $C = (C_1, C_2, \ldots, C_n)^T$.

Corollary 3.3. If there exists a $FGBT(n, k)$ with Property C, then there exists a $(1, k - 1; k, n, k)$-frame.

The spectrum of $FGTD(n, k)$ with Property C has been determined for $k = 2$ and for $k = 3$ with a finite number of possible exceptions.

Theorem 3.3 [15]. For n a positive integer, $n \neq 2$ or 4, there exists a $FGTD(n, 2)$ with Property C.

Theorem 3.4 [11]. For n a positive integer, $n \geq 4$, there exists a $FGTD(n, 3)$ with Property C except possibly for $n \in \{14, 15, 17, 18, 19, 23, 27, 31, 39, 47, 62, 68, 87, 102, 103, 114, 115, 127, 131, 151, 159\}$.

4. Partitioned generalized balanced tournament designs

Let G be a $GBT(n, k)$ defined on V. Suppose we can partition the columns of G into $k + 1$ sets $B_1, B_2, \ldots, B_{k+1}$ where $|B_i| = n$ for $i = 1, 2, \ldots, k - 2$, $|B_i| = n - 1$ for $i = k - 1, k$ and $|B_{k+1}| = 1$ such that

1. every element of V occurs precisely once in each row and column of B_i for $i = 1, 2, \ldots, k - 2$, and
2. every element of V occurs precisely once in each row and column of $B_i \cup B_{k+1}$ for $i = k - 1$ and $i = k$.

Then the $GBT(n, k)$, G, is called partitioned and we denote the design by $PGBT(n, k)$. Let $C = (C_1, C_2, \ldots, C_n)^T$ where C_i, $1 \leq i \leq n$, is the deficient k-tuple of row i of G. It is clear that if G is partitioned then
If G is partitioned and has Property C, then each of the $n \times n$ arrays $B_1, B_2, \ldots, B_{k-2}$ will contain a copy of C as a column. We illustrate this definition by displaying a $PGBTD(8, 3)$ in Figure 5. This design also has Property C.

The existence of $PGBTD$s is equivalent to the existence of Kirkman squares in diagonal form. Let K be a $KSk(nk; 1, k-1)$ defined on V. K is said to be in diagonal form if it can be written in the following form.
Figure 6. A $KS_3(24; 1, 2)$ (B_1, B_2, B_3 are displayed in Figure 5)

A is an $n \times n$ array which contains n k-tuples along its diagonal. F_1 is an $n \times n - 1$ array of k-tuples; F_2 is an $n - 1 \times n$ array of k-tuples; and E is an $n - 1 \times n - 1$ empty array. Each of the arrays D_i, $1 \leq i \leq k - 2$, is an $n \times n$ array of k-tuples. All of the remaining cells of K are empty. We recall that K displays a pair of orthogonal resolutions for a $DR(v, k, k - 1)$-BIBD.

Theorem 4.1. There exists a $PGBTD(n, k)$ if and only if there exists a $KS_k(nk; 1, k - 1)$ in diagonal form.

Proof. Let P be a $PGBTD(n, k)$ defined on V. Let $B_1, B_2, \ldots, B_{k+1}$ be a corresponding partitioning of the columns of P. Let $C = (C_1, C_2, \ldots, C_n)^T$ where C_i, $1 \leq i \leq n$, is the deficient k-tuple of row i of P. Recall that $B_{k+1} = C$. We now define the arrays $A, F_1, F_2, D_1, D_2, \ldots, D_{k-2}$ which provide the diagonal form of a $KS_k(nk; 1, k - 1)$, K, defined on V. A is an $n \times n$ array which contains C_i in cell (i, i). (All of the other cells of
Let \(F_1 = B_k \) and let \(F_2 = B_{k-1}^T \). Finally, let \(D_i = B_i \) for \(i = 1, 2, \ldots, k-2 \). It is easy to verify that we have constructed the arrays for a \(KS_k(nk; 1, k-1) \) in diagonal form.

The construction can be reversed. Let \(K \) be a \(KS_k(nk; 1, k-1) \) defined on \(V \). Let \(C = B_{k+1} = (C_1, C_2, \ldots, C_n)^T \) where \(C_i \) is the \(k \)-tuple contained in cell \((i, i)\) of \(A \). It is straightforward to verify that \([D_1D_2\cdots D_{k-2}F_2F_1C]\) is a \(PGBTD(n, k) \) defined on \(V \).

A \(KS_3(24; 1, 2) \) in diagonal form which is equivalent to the \(PGBTD(8, 3) \) in Figure 5 is displayed in Figure 6.

We note that for \(k = 2 \) this construction reduces to the construction used by D. R. Stinson in [34] to provide the connection between Room squares and \(PBTDs \).

Corollary 4.2 (D. R. Stinson [34]). There exists a \(PGBTD(n, 2) \) if and only if there exists a \(MESRS(2n-1) \).

The following result has been established for \(k = 2 \).

Theorem 4.3 (Lamken and Vanstone [16], [17], [18], Lamken [8]). There exists a \(PGBTD(n, 2) \) for all \(n \geq 5 \) except possibly for \(n \in \{9, 11, 15, 26, 28, 34, 44\} \).

Constructions and existence results for \(PGBTD(n, 3) \)s have been used quite recently to determine the spectrum of \(DR(3n, 3, 2)-BIBDs \) or \(KS_3(3n; 1, 2) \)s, [12]. There are now only a small number of possible exceptions for the existence of \(KS_3(3n; 1, 2) \)s; these results are discussed in detail in [12]. We refer to [10, 11, 12] for constructions and results for \(PGBTD(n, k) \)s with \(k \geq 3 \).

5. USING GBTDs TO CONSTRUCT RESOLVABLE BIBDs

In this section, we generalize the constructions in [19] to use generalized balanced tournament designs to construct resolvable, near resolvable, doubly resolvable and doubly near resolvable \(BIBDs \). The first three constructions are for resolvable and near resolvable designs.

Theorem 5.1. If there exists a \(GBTD(n, k) \), a \((kn+1, k+1, 1)-RBIBD \) and a \(NR(n, k+1, k)-BIBD \), then there is a \(((k+1)n, k+1, 1)-RBIBD \).

Proof. Let \(V_1 = \{x_{i1}, x_{i2}, \ldots, x_{in}\} | i = 1, 2, \ldots, n \} \) and let \(V_2 = \{y_1, y_2, \ldots, y_n\} \).

Let \(G' \) be a \(GBTD(n, k) \) defined on \(V_1 \). Suppose the deficient \(k \)-tuple of row \(i \) in \(G' \) is \(\{x_{i1}, x_{i2}, \ldots, x_{ik}\} \) for \(i = 1, 2, \ldots, n \). Let \(D' \) be a resolvable \((kn+1, k+1, 1)-BIBD \) defined on \(V \cup \{\infty\} \) so that the blocks containing \(\infty \) are \(\{\infty, x_{i1}, x_{i2}, \ldots, x_{ik}\} \) for \(i = 1, 2, \ldots, n \). Let \(D' \) be the resolution class of \(D \) which contains the block \(\{\infty, x_{i1}, x_{i2}, \ldots, x_{ik}\} \) for \(i = 1, 2, \ldots, n \). \(N \) will denote a \(NR(n, k+1, k)-BIBD \) defined on \(V_2 \) and \(N_i \) will denote the resolution class of \(N \) which does not contain the element \(y_i \).
We construct a resolvable \((kn + n, k + 1, k)\)-BIBD on \(V_1 \cup V_2\) as follows. To each block in row \(i\) of \(G'\) add the element \(y_i\) \((i = 1, 2, \ldots, n)\). Denote the resulting array of blocks of size \(k + 1\) by \(G\). Let \(C_1, C_2, \ldots, C_{nk-1}\) be the columns of \(G\). Replace each block \(\{\infty, x_{i1}, x_{i2}, \ldots, x_{ik}\}\) in \(G'\) with the block \(\{y_i, x_{i1}, x_{i2}, \ldots, x_{ik}\}\) for \(i = 1, 2, \ldots, n\). \(D\) will denote the resulting configuration. Let \(D_i\) be the corresponding resolution class of \(D\) which contains the block \(\{y_i, x_{i1}, x_{i2}, \ldots, x_{ik}\}\) \((i = 1, 2, \ldots, n)\).

The blocks in \(G \cup D \cup N\) form a \((kn + n, k + 1, k)\)-BIBD. Every distinct pair in \(V_1\) occurs \(k - 1\) times in \(G\) and once in \(D\). Every pair \(\{y_i, x_{ij}\}\) occurs \(k\) times in \(G \cup D\). Every pair in \(V_2\) occurs \(k\) times in \(N\). It is easy to verify that \(\{C_1, C_2, \ldots, C_{nk-1}, D_1 \cup N_1, D_2 \cup N_2, \ldots, D_{n-1} \cup N_{n-1}\}\) is a resolution for this \((kn + n, k + 1, k)\)-BIBD defined on \(V_1 \cup V_2\). □

The following example illustrates this theorem. Since there exists a \(GBTD(5, 3)\) [19], a \((16, 4, 1)\)-RBIBD [7] and a \(NR(5, 4, 3)\)-BIBD, we can construct a \((20, 4, 3)\)-RBIBD.

Theorem 5.2. If there exists a \(GBTD(n, k)\), a \(RGDD_{n-1}(nk; k + 1; k; 0, 1)\) and an \((n, k + 1, k)\)-RBIBD, then there is a \((kn + n, k + 1, k)\)-BIBD.

Proof. Let \(V_1 = \{x_{i1}, x_{i2}, \ldots, x_{ik}\} \mid i = 1, 2, \ldots, n\) and let \(V_2 = \{y_1, y_2, \ldots, y_n\}\).

Let \(G'\) be a \(GBTD(n, k)\) defined on \(V_1\). Suppose the deficient \(k\)-tuple of row \(i\) in \(G'\) is \(\{x_{i1}, x_{i2}, \ldots, x_{ik}\}\) for \(i = 1, 2, \ldots, n\). Let \(D\) be a \(RGDD_{n-1}(nk; k + 1; k; 0, 1)\) defined on \(V_1\) so that the groups of \(D\) are the \(k\)-tuples \(\{x_{i1}, x_{i2}, \ldots, x_{ik}\}\) for \(i = 1, 2, \ldots, n\). Let \(D_1, D_2, \ldots, D_{n-1}\) be the resolution classes of \(D\). Let \(N\) denote an \((n, k + 1, k)\)-RBIBD. \(N_1, N_2, \ldots, N_{n-1}\) will be the resolution classes of \(N\).

We construct a \((kn + n, k + 1, k)\)-RBIBD as follows. To each block in row \(i\) of \(G'\) add the elements \(y_i\) \((i = 1, 2, \ldots, n)\). Denote the resulting array of blocks of size \(k + 1\) by \(G\). Let \(C_1, C_2, \ldots, C_{nk-1}\) be the columns of \(G\). Let \(C_{nk} = \{\{y_i, x_{i1}, x_{i2}, \ldots, x_{ik}\} \mid i = 1, 2, \ldots, n\}\). The blocks in \(G \cup D \cup N \cup C_{nk}\) form a \((kn + n, k + 1, k)\)-BIBD. Every distinct pair in \(V_1\) occurs \(k - 1\) times in \(G\) and once in \(D \cup C_{nk}\). Every pair \(\{y_i, x_{ij}\}\) occurs \(k\) times in \(G \cup C_{nk}\). Every pair in \(V_2\) occurs \(k\) times in \(N\). It is easy to verify that \(\{C_1, C_2, \ldots, C_{nk}, D_1 \cup N_1, D_2 \cup N_2, \ldots, D_{n-1} \cup N_{n-1}\}\) is a resolution for this \((kn + n, k + 1, k)\)-BIBD defined on \(V_1 \cup V_2\). □

The following is an example of this construction. Since a \(GBTD(8, 3)\) exists [11], a \(RGDD_{2}(24; 4; 3; 0, 1)\) exists [34] and an \((8, 4, 3)\)-RBIBD is easily constructed, we can use Theorem 5.2 to construct a \((32, 4, 3)\)-RBIBD.

Theorem 5.3. If there is a \(NGBTD(n, k)\), a \((kn + 1, k + 1, 1)\)-RBIBD and a \(NR(n, k + 1, k)\)-BIBD, then there is a \(NR(kn + n + 1, k + 1, k)\)-BIBD.

Proof. Let \(V_1 = \{x_1, x_2, \ldots, x_{nk+1}\}\) and let \(V_2 = \{y_1, y_2, \ldots, y_n\}\).

Let \(G'\) be a \(NGBTD(n, k)\) defined on \(V_1\). To each block in row \(i\) of \(G'\)
add the element \(y_i \), \(i = 1, 2, \ldots, n \). Denote the resulting array of blocks of size \(k + 1 \) by \(G \) and label the columns of \(G \), \(G_1, G_2, \ldots, G_{nk+1} \). Suppose the columns are arranged so that \(G_i \) contains every element of \(V_1 \cup V_2 - \{ x_i \} \) precisely once.

Let \(D \) be a \((kn+1, k+1, 1)\)-RBIBD defined on \(V_1 \). Let \(D_1, D_2, \ldots, D_n \) be a set of resolution classes for \(D \). \(N \) will denote a \(NR(n, k+1, k)\)-BIBD defined on \(V_2 \) and \(N_i \) will denote the resolution class of \(N \) which does not contain \(y_i \).

The blocks in \(G \cup D \cup N \) form a \((kn+n+1, k+1, k^2)\)-BIBD. Each pair of distinct elements from \(V_1 \) occurs \(k - 1 \) times in \(G \) and once in \(D \). Each pair of distinct elements from \(V_2 \) occurs \(k \) times in \(N \). Finally, each pair of the form \(\{ x_i, y_j \} \), \(1 \leq i \leq nk+1 \) and \(1 \leq j \leq n \), occurs \(k^2 \) times in \(G \). A near resolution of this design is given by the following (near) resolution classes:

\[G_1, G_2, \ldots, G_{nk+1}, D_1 \cup N_1, D_2 \cup N_2, \ldots, D_n \cup N_n. \]

A simple example of this construction is as follows. There exists a \(NGBTD(5, 3) \) [11], a \((16, 4, 1)\)-RBIBD [7] and a \(NR(5, 4, 3)\)-BIBD. We can use Theorem 5.3 to construct a \(NR(21, 4, 3)\)-BIBD.

In [19] we used BTDs and OBTDs to construct doubly resolvable and doubly near resolvable BIBDs with block size 3. We can generalize these constructions to use GBTDs and NGBTDs with block size \(k \) to produce doubly resolvable and doubly near resolvable BIBDs with block size \(k+1 \).

In order to describe these constructions, we require several definitions.

Let \(G \) be a \(NGBTD(n, k) \). Let \(R_1, R_2, \ldots, R_n \) be the rows of \(G \) and let \(G_1, G_2, \ldots, G_{nk+1} \) be the columns of \(G \). \(G' = \{ G_1, G_2, \ldots, G_{nk+1} \} \) is a (near) resolution of the underlying \((kn+1, k, k^2-1)\)-BIBD. A resolution \(D \), \(D = \{ D_1, D_2, \ldots, D_{kn} \} \), is called an orthogonal resolution to \(G' \) if

1. \(|G_i \cap D_j| \leq 1 \) for \(1 \leq i, j \leq kn+1 \) and
2. \(|D_j \cap R_i| = 1 \) for \(1 \leq j \leq kn+1, 1 \leq i \leq n \).

If \(D \) exists, we say that the \(NGBTD(n, k) \) has a pair of orthogonal resolutions (ORs).

For GBTDs, as in the case of BTDs, we define a pair of almost orthogonal resolutions. Let \(G \) be a \(GBD(n, k) \). Let \(R_1, R_2, \ldots, R_n \) be the rows of \(G \) and let \(G_1, G_2, \ldots, G_{kn-1} \) be the columns of \(G \). \(G' = \{ G_1, G_2, \ldots, G_{kn-1} \} \) is a resolution of the underlying \((kn, k, k^2-1)\)-BIBD. A resolution \(D \), \(D = \{ D_1, D_2, \ldots, D_{kn-1} \} \), will be called almost orthogonal to \(G' \) if

1. \(G_{kn-1} = D_{kn-1} \)
2. \(|G_i \cap D_j| \leq 1 \) for \(1 \leq i, j \leq kn-2 \),
3. \(|D_j \cap R_i| = 1 \) for \(1 \leq j \leq kn-2, 1 \leq i \leq n \).

If \(D \) exists, we say that \(G \) has a pair of almost orthogonal resolutions (denoted by AORs). If \(G \) is a \(GBD(n, k) \) with a pair of almost orthogonal resolutions with the property that the deficient \(k \)-tuples of \(G \) are contained in the shared
Theorem 5.4. Let tary solutions and Property C' and each cell of the main diagonal.

Proof. Let K be a $KS_{kn+1}(k n + 1; 1, 1)$ defined on $V \cup \{\infty\}$ where ∞ occurs in each cell of the main diagonal.

We say K has a complementary $(1, k; k + 1, n, 1)$-frame (or a complementary $DNR(n, k + 1, k)$-BIBD) if there exists a $(1, k; k + 1, n, 1)$-frame (or a $DNR(n + k, k + 1, k)$-BIBD) which can be written in the empty cells of K.

Theorem 5.5. If there is a $GBTD(n, k)$ with a pair of almost orthogonal resolutions and Property C' and if there is a $KS_{kn+1}(kn + 1; 1, 1)$ with a complementary $(1, k; k + 1, n, 1)$-frame, then there is a $KS_{kn+1}(kn + n; 1, 1)$ or a $DR(kn + n + 1, k + 1, k)$-BIBD.

Proof. Let $V_i = \{x_{i1}, x_{i2}, \ldots, x_{ik}\}$ for $i = 1, 2, \ldots, n$ and let $V = \bigcup_{i=1}^n V_i$. Let $W = \{y_1, y_2, \ldots, y_n\}$.

Let G' be a $GBT(n, k)$ defined on V with a pair of almost orthogonal resolutions and Property C'. Suppose the deficient k-tuples of G' are V_i for $i = 1, 2, \ldots, n$. Let $C = (C_1, C_2, \ldots, C_n)^T$ be the column of deficient k-tuples where C_i is the deficient k-tuple for row i. Since G' has Property C', $V_i = C_j$ for some j. Denote the columns of G' by $A'_1, A'_2, \ldots, A'_{kn+1}$.

Let $D = \{D'_1, \ldots, D'_{kn+1}\}$ be an almost orthogonal resolution for G'. Add a new element y_i to each k-tuple in row i of G', $1 \leq i \leq n$, and call the resulting array G. We label the first $kn-2$ columns of G, $A_1, A_2, \ldots, A_{kn-2}$, and the last column of G we label X. $(X_i$ denotes the block in row i of X.)

The almost orthogonal resolution D' provides an almost orthogonal resolution D in G. Let $D = \{D_1, D_2, \ldots, D_{kn-2}, X\}$.

Let K be a $KS_{kn}(kn + 1; 1, 1)$ defined on $V \cup \{\infty\}$ such that the main diagonal of K contains the $(k-1)$-tuple $C_i \cup \{\infty\}$ in cell (i, i) for $i = 1, 2, \ldots, n$. Replace the $(k+1)$-tuple $C_i \cup \{\infty\}$ with the $(k+1)$-tuple $C_i \cup \{y_i\}$ for $i = 1, 2, \ldots, n$. Let $Y_i = C_i \cup \{y_i\}$ and let $Y = \{Y_1, Y_2, \ldots, Y_n\}$. Let F be a complementary $(1, k; k + 1, n, 1)$-frame defined on W where row i and column i of F do not contain the element y_i, $1 \leq i \leq n$. Place F in the empty cells of K and delete the main diagonal of this new array of $(k+1)$-tuples. Call the resulting array E. Label the rows of E by T_1, T_2, \ldots, T_n and the columns of E by S_1, S_2, \ldots, S_n.

It is straightforward to verify that the collection of $(k+1)$-tuples in $G \cup E \cup Y$ forms a $(kn + n, k + 1, k)$-BIBD. We list a pair of resolutions R^1 and R^2 for the design.

$$R^1 = \{X, A_1, A_2, \ldots, A_{kn-2}, T_1 \cup Y_1, T_2 \cup Y_2, \ldots, T_n \cup Y_n\},$$

$$R^2 = \{Y, D_1, D_2, \ldots, D_{kn-2}, S_1 \cup X_1, S_2 \cup X_2, \ldots, S_n \cup X_n\}. \quad \Box$$

We have a similar result which uses $NGBTDs$.

Theorem 5.5. If there is a $NGBT(n, k)$ with a pair of orthogonal resolutions
and a $\text{KS}_{k+1}(kn+1; 1, 1)$ with a complementary $(1, k; k+1, n, 1)$-frame (or a complementary $\text{DNR}(n, k+1, k)$-BIBD), then there is a $\text{DNR}(nk+n+1, k+1, k)$-$\text{BIBD}$.

Proof. Let $V_1 = \{x_1, x_2, \ldots, x_{nk+1}\}$ and let $V_2 = \{y_1, y_2, \ldots, y_n\}$. Let G' be a $\text{NGBTD}(n, k)$ defined on V_1. Suppose column i of G' does not contain the element x_i for $i = 1, 2, \ldots, kn+1$. To each k-tuple in row i of G' add the element y_i, $1 \leq i \leq n$. Let G denote the resulting array of blocks of size $k+1$. The columns of G will be denoted by $G_1, G_2, \ldots, G_{kn+1}$. G_i contains every element of $(V_1 - \{x_i\}) \cup V_2$ precisely once. The orthogonal resolution for G' will partition the blocks of G into $kn+1$ (near) resolution classes; call these $D_1, D_2, \ldots, D_{kn+1}$. Suppose D_i contains every element of $(V_1 - \{x_i\}) \cup V_2$ precisely once.

Let K' be a $\text{KS}_{k+1}(kn+1; 1, 1)$ defined on V_1. Place a complementary $(1, k; k+1, n, 1)$-frame (or a complementary $\text{DNR}(n, k+1, k)$-BIBD) defined on V_2 in the empty cells of K'. Let K denote the resulting array of $(k+1)$-tuples. Let T_1, T_2, \ldots, T_n denote the rows of K and let S_1, S_2, \ldots, S_n denote the columns of K. Suppose T_i contains every element of $V_1 \cup (V_2 - \{y_i\})$ precisely once and suppose S_j contains every element of $V_1 \cup (V_2 - \{y_j\})$ precisely once ($i = 1, 2, \ldots, n$). (If we have used a complementary $(1, k; k+1, n, 1)$-frame, then $y_j = y'_j$.)

The collection of blocks in $K \cup G$ forms a $(kn+n+1, k+1, k)$-BIBD. One (near) resolution of this design consists of $\{G_1, G_2, \ldots, G_{kn+1}, T_1, T_2, \ldots, T_n\}$. An orthogonal resolution is given by

$$\{D_1, D_2, \ldots, D_{kn}, S_1, S_2, \ldots, S_n\}.$$ □

Existence results using the constructions in Theorems 5.4 and 5.5 for block size $k = 2$ appear in [9]. Thus far, we have not constructed any examples for $k \geq 3$. Very little is known about the Kirkman squares, $\text{KS}_{k+1}(kn+1; 1, 1)$, or the $(1, k; k+1, n, 1)$-frames which are required for $k \geq 3$.

For example, the smallest $\text{KS}_4(v; 1, 1)$ known to exist is $v = 64$ [5]. In order to apply our constructions, we would need to find a complementary $(1, 3; 4, 21, 1)$-frame.

6. **Summary**

We have introduced generalized balanced tournament designs and shown that these designs are related to other types of combinatorial designs. We have also described how to use GBTDS to construct resolvable, near resolvable and doubly resolvable BIBDs. These constructions together with our existence results for GBTDS have already produced several new classes of designs. These are described in [10, 11, 12].
References

2. Demeng Chu and Lie Zhu, *Existence of resolvable balanced incomplete block designs with \(k = 5 \) and \(\lambda = 1 \), Ars Combin. 24 (1987), 185–192.
12. ____, *The existence of doubly resolvable \((v, 3, 2)\)-BIBDs*, in preparation.
16. ____, *The existence of partitioned balanced tournament designs of side \(4n+1 \)*, Ars Combin. 20 (1985), 29–44.
24. ____, *Existence results for doubly near resolvable \((v, 3, 2)\)-BIBDs*, (submitted).
25. ____, *The existence of \(KS_2(v; \mu, \lambda)\): main constructions*, Utilitas Math. 27 (1987), 111–130.
26. ____, *The existence of \(KS_2(v; \mu, \lambda)\): special constructions*, Utilitas Math. 27 (1985), 131–155.
36. ——, *The equivalence of certain incomplete transversal designs and frames*, Ars Combin. 22 (1986), 81-87.

Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455

Current address: Center for Communications Research, Institute for Defense Analyses, Princeton, New Jersey 08540